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Higher-order parametric level statistics in disordered systems
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Higher-order parametric level correlations in disordered systems with broken time-reversal symmetry are
studied by mapping the problem onto a model of coupled Hermitian random matrices. Closed analytical
expression is derived for a parametric density-density correlation function that corresponds to a perturbation of
disordered system by a multicomponent fl[i81063-651X99)14503-3

PACS numbgs): 05.45—-a, 71.55.Jv, 73.23:b

Parametric level statistics reflect the response of the speanalytical results beyond the two-point correlators due to
trum{E,} of complex chaotic systems to an external pertur-enormous increase of number of entries in the supermatrix
bation. A few years ago it was showWfh—3] that a system fields, thereby making any explicit calculations in that ap-
whose spectrum follows closely the universal fluctuationsproach impossible. Extensions to higher-order statistics can
predicted by the random matrix theof¥] should also ex- be performed by using an involved method of differential
hibit a universal parametric behavior. This conclusion Wa%quations for quantum correlation functions proposed in the
reached by analyzing the dimensionless autocorrelator afyych earlier work 16].
level velocities of electron in a disordered metallic sample | the present paper we address the issue of higher-order
with a ring topology, enclosing a magnetic flyx A dia-  parametric level statistics within the framework of the ran-
grammatic perturbation techniqgue was used in the range cHom matrix theory, by appealing to the model of coupled

12 i e imi -12 o i
fI;xehsg b <‘Pt< 1t [(11]' \_’;’E_”et;hef opp05|tekllr?|:r,:p<g Hermitian random matricefl7]. The latter enables us to
[2], has been treated within the framework of the SlJpersymbrovide a complete information about parametric correla-

metry formalism(5,6]. [Hereg>1 is the dimensionless con- tions of single electron level densities in the presence of the

ductance]. In this particular problem, the parametric correla- . . :
. ; . . multicomponent flux perturbing a disordered system, charac-
tions take a universal form involving the rescaled paramete

X?=4mge?, with g=E,/A, the ratio of the Thouless en- terized by a dimensionless conductaigeel. To the best of

ergy and the mean level spacing. Numerical simulations hav8Ur knowledge, this is the first detailed study of higher-order
supported the point that the universal character of parametriearametr'c I_evel statistics in disordered systems that adopts
level statistics extends to a wider class of chaotic system&'€ conventional language of the random matrix theory.
without disorder[chaotic billiard§ whose Hamiltonian de- In what follows we consider a weakly disordered system
pends on some external parameXenn such SyStemS, the fallen in the Universal(meta”iC) regime, g>1, which is
spectral fluctuations taken at different valuesxobecome known [5] to be modeled by invariant ensembles of large
system—independent after rescalixg; X, which involves random matrices. Assuming that the time reversal symmetry
solely the “generalized” dimensionless conductange is completely broken(unitary symmetry, one can statisti-
=(4m7) A ¥[0EL(X)/9x]?). Along with the diagram- cally describe an unperturbed single electron spectrum by a
matic technique and the supersymmetry formalism, the pargsaussian unitary ensemb[&UE] of large NXN random
metric correlations have been studied in detail within thematricesH, distributed in accordance with the probability
model of Brownian motior{7,8], in the semiclassical limit density?[Hq]xexp{—TrH3}. Such a distributioP[Hg] in-
[9,10], and by the loop-equations technicjuel]. duces the energy scale being the mean level spacing,

A further burst of activity in the field occurred after it was = 7(2N) "2 Let us now apply a Gaussian perturbation
realized[3,7,12—-15 that the problem of parametric level consisting ofd componentsay= (1, . . . ,bq), Which does

correlations is identical to the ground-state dynamics of the, change the global unitary symmetry, and which drives
integrable many-body quantum model known as Calogero ’

) ; 9€T0the HamiltonianHy to H=Hy+3S¢_ ¢ Hy, with matrices
Sutherland-MoseiCSM] system. This gave new information |~ "~ fromO GUE: 7§[H ]k;éf&_kTer} or Kk
about CSM space-timer () correlation functions that can X : K k

be obtained from parametric density-density correlators_ 1,...d. This choice corresponds to the equal “strength

(v(E,0)v(E’, ¢)) involving only two different external pa- of each component of the “vector” perturbatiesy since the
rameters by mappinfB] X2— — 2ir,E/A—r. For the more average((Hy) ,,(Hy),+,-) is independent of the index The
general situation of higher-order correlation functions theduantity that provides the most detailed information about
connection between CSM fermions and quantum chaotic sydarametric cPrreIanons in the case of the mult|corr1ponent
tems has been establishgtb] as well by using the super- perturbationey is the correlator of level densities(E, ¢,,)
symmetry technique; however, it has not led to any explicit=Tr §(E—Hy—=¢_;¢¢H\) taken at both different values
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of energyE and ofo. For this reason, we will concentrate on with ¢y=1 and ¢4, ,=2. [This convention is relaxed ev-

the dimensionless multipoint correlator

I(po ..... pd({w(O)}aé; . ;{w(d)}!éd)

Po P1
=Am<_H W(E+ o, O)H W(E+ol ¢ -

ip=1 ii=1

Pd
X H v(E+ w(d>,¢d)> 1)

Idf

wherem=py+ - -
averaging over ensembles of Hermitian matriegswith k
=0, ... d. Equation(1) can be rewritten as ad+1) mul-

tiple matrix integral over matriceEIozHO andﬁg>0=H0
+Eﬁ—=l¢ka1

deo JdeH H Tré( E+w(") H,)

o=01i,=1

d
xexp{ —Tr{ Zo (

d-1
—22 ¢fiHaHan

b2+ 2 )H?

J : )

-+ pg, and the angular brackets stand for matrix H

erywhere below Eq(9).] We notice that the strengths, (k
=1,...d) of the perturbation are supposed to be small,
¢ <1. This is justified in the thermodynamic limN— o,
since for Gaussian perturbation accepted abadbg,are
known to scale wittN as ¢, = 7N ~Y2X, , with X, being the
set of dimensionless parameters of order ufl§].

Our crucial observation is that E(R) can be interpreted
as a density-density correlator in the effective model af (
+1) Hermitian random matrices coupled in a chain: Each

is represented by a point, and two adjacent matri-
cesH andHaH are joined by a line if the coupling of the

type exgc,Tr H Hﬁl} is present in Eq(2). In this situa-
tion, the joint probability density of eigenvalues of all the
matrices in the chain can be deduced through the Itzykson-
Zuber integral[19] making the model of random Hermitian
matrices coupled in a chain to be a completely solvable. In
accordance with the Eynard-Mehta theorglid], the dimen-
sionless correlatok, = py Can be represented as a deter-

minant of themXm block matrix, m=pg+---+py, coOn-
sisting of d+1)Xx(d+1) rectangular submatricek, ;
with «,8=1,...,d+1), each of them havingp,_,
X pg—1 entries[20],

[Kia(@f? [N ]pxp,  [Kid o o) xp, [Kigs1(@fd 0] Ipoxp,
[Koa(ofY 0[N ]pxp,  [Kodofl,of)]p xp, [Kags1(of @) ]p xp,
Koo. ... py=Det ()
[Kar 110l 0N o xp, [Karrd o 0i)]p 0, [Kas1a+1(0f? o) xp,
|
The matrix kernelsK, ; in Eq. (3) are product. Two sets of orthogonal functioRs, ; andQg ; en-
Ko p(€,7)=A[H 5(£,7) — Eq g(£,m)], (4) tering Eq.(5) are determined recursively,
where Pa,j(g):f d"?Pa—l,j( 77)Wa—1( 77!5)1 (83)
Ha p(€:m) NillQ (&)Pgi(n) 5
a, y17) = n Na,j i\1),
g E TR Qﬁ,j<§>=J dywg(€ 7 Qg 1(7), (8b)
and . :
for 2= a=<d+1 and 1= B=<d; the starting points of the re-
Ea (& m)=(Wo*-*wWg_1)(&, 1) (6)  cursions(8a) and (8b) are the polynomialsP,;=P; and

for lsa<pBs=d+1; otherwise,E, ;/=0. Here the partial
weightsw,, are

Va +Va+ _
Wa(f,n)ZEXD(—MJFZ%ZM . (73
V(€)= (214 ¢ ) Sant Sags1+11E2  (Th)

[compare with the weight of the matrix model, E)]. The

Qg+1j=Q; orthogonal with respect to aonlocal weight
W(‘f! 7]) = (Wl* : *Wd)(gi 7])!

f dff dnPi(HW(E, 7)Qj(n)=h;d; . 9

Close inspection of the equations above shows that the
basic orthogonal polynomial; andQ; can be expressed in
terms of Hermite polynom|als P;(§)=H;(§€).Q;(§)

notation (v,*-*wg_1)(&,7) stands for the product of the =H; (§[l+2k 1¢k] Y2 Then, step- by step mtegraﬂons in
partial weightsw integrated over internal variables of that Eqs (8) yield
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) , (10b
1

where we have introduced the Hermite functiofil]
®j(§)=exr[—§2/2]Hj(§). Also, we defined the function
2

Fa<§>=%[cgfﬁwgz—cb;%l)], (1

and the constar(taz[1+2§=1¢>§]1’2. [In order to compac-
tify the formulas, it is agreed from now on thaty,
=g, bo=b1, ZL=L(--+)=0, andIf=5(---)=1]. One
can verify that the orthogonality relatidf) is satisfied with

d ~jr2 d
hj=20j1\m 1+ 2, ¢E} 1 (dm),
so that the first term in Eq4) is

N-1 g 7
— Fa(f)_Fa( ) il =~ i
Ha,a(f'ﬂ) € ! ]ZO qjj(cal)®l(cal)'
(139

(12

B—1
Ha<ﬁ<§,n>=k[l () eFald=Fp(n

13 i
N q’j(cal)q’1<cﬁl)

ij'o 51 7
1+k§=‘, ¢4

(13b

1
Hosp(é, )= g €"a&7Fsl

IT (¢m)
k=p8

(130

3

o] o
Ca—l C,B—l

X > a1 =2

j=0

1+ 6
K=8
The second term in Ed4) is found from Eqgs(6) and (7),

B—1
I (/) elal®=Cplm
k=«

_ 2
Eopl£7)= — exp| — -
2 > ¢
’7Tk2 ¢k k=a
(14

for B=a+2, while E, ,=0 andE, ,,;=w,. Here the
function G, reads
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Gul(é)= 5 (da = ¢a20). (15

Now, we are in position to compute the matrix kernels
K Via Egs.(4), (13), and(14) in the leading order iN
—o and keepingX,= ¢NV% w~0O(1) fixed. The simplest,
diagonal kernel K, , can be evaluated through the
Christoffel-Darboux formuld22], supplemented by the as-
ymptotics of Hermite functions,

Do(1) (—1)N [ cog 2tN*?)
Pon1(D)] NV sin(2tND (10
wheret~AO(N%). One obtains,
Kaaltm—eoio-on I8 ED)

TAHE- )

Two other casesg< anda> g, demand more effort. For
a<p we represent the sum fdd .z in Eq. (13b as a
difference of two series¥|_o(---)—2_y(---). The first
sum is exactly computable by making use of the Mehler
summation formuld22]. In the thermodynamic limit, this
procedure yields a term that is equalg 4z in Eq. (14), and
therefore it gets canceled from the expresgidfor K, 5,
which is completely due to the remaining SLEﬁf:N(- <)

To evaluate the latter, we replace the sum gviey an inte-
gral to get

B—1
Ka<ﬁ(§,n)=—k[[ (¢k@)eea<§>—e,;<n>
xflwdxl cos{wi—n)\l}

(18

232 B-1
X -——> .
exp( 2 & Xk)

In the casea> B the large} terms in Eq.(13¢ yield the
main contribution to the sum due to the factpd
+E|‘(’;;¢E]j/2. Then, passing from summation to integration,
we derive

1
Koo p(€,7) = e 5«97

I1 (¢m)
k=p

a—1
1 §—77 ) 772)\2 )
X | d\ cog m——N\ |ex X2,
fo S(ﬂ- A ;{ 2 k=p K

(19

Notice that the structure of the block matrix in Eg) allows

one to simultaneously suppress the prefactors of the form
M (---)e" ) in Egs. (17), (18), and (19). Having this in
mind, we come down to the closed analytical determinantal
expression Eq(3) for (pg+ - - - + pg)-point density-density
correlator withK , 5 replaced byM , g,

sin{ A 1 (&= )]
mA N (E—7)

M, (& m)= , (203
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o E—ny whereM , ; are those given by Eq$20) with zkx§—>x2;
Ma<B(§-”)E_J1 d\y CO{”TM) (i) By replacement[3] w;j/A—r;,Q;/A—R; and X?—
—2i7in Eqg. (21) one arrives at the space-time correlation
wzxi A1 5 function in the CSM model with a coupling=1; here the
xex;{ - kga Xk)' (20D coordinater;} correspond to the time=0, while the{R;}

refer to the timet=r.
22 et In summary, we presented a random-matrix-theory treat-
)exp( 5 E Xﬁ) ) ment of the problem of higher-order parametric spectral sta-
k=8 tistics in disordered systems with broken time reveral sym-
(209 metry in the presence of the multiparameter perturbation. A
) ) complete analytical solution was based on the mapping of
Equations(3) and(20) are the main result of the paper. They ine injtial problem onto a model of random Hermitian matri-
provide a detailed information about higher order parametrig.qg coupled in a chain. As a particular case of the general
density-density correlations in the case of multiparametegomﬂom given by Eqs(3) and (20) the multipoint paramet-
perturbation of di_sordered system. Several particular c_orrelahc spectral correlator Eq21) for the scalar perturbation has
E)(;f Ctahnebesrc?llgr"y Sggﬁ?ggﬂggm ?)L;regegstglnzxp{ﬁ;smn' been obtained. Together with a well-established correspon-
— APFUTIP L (E + w;,0)IT9 v(E,+Q» #) is determiﬁgd dence between CS_M fermlor]s and pa_rametrlc_ level statistics,
=1 " =1 I the latter expression provides an information about the

Mo p(€,m)= foldh cos( wg;—n)\

by space-time correlation function in the Calogero-Sutherland-
Moser model of free, noninteracting fermions.
kp'qEDe[( Maal@irw)) - Mazplor ) . (2 The authors thank I. Yurkevich for bringing R¢1.6] to
Map(Qi0)) Mg o€, 0) our attention.
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