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Higher-order parametric level statistics in disordered systems
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Higher-order parametric level correlations in disordered systems with broken time-reversal symmetry are
studied by mapping the problem onto a model of coupled Hermitian random matrices. Closed analytical
expression is derived for a parametric density-density correlation function that corresponds to a perturbation of
disordered system by a multicomponent flux.@S1063-651X~99!14503-3#

PACS number~s!: 05.45.2a, 71.55.Jv, 73.23.2b
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Parametric level statistics reflect the response of the s
trum $En% of complex chaotic systems to an external pert
bation. A few years ago it was shown@1–3# that a system
whose spectrum follows closely the universal fluctuatio
predicted by the random matrix theory@4# should also ex-
hibit a universal parametric behavior. This conclusion w
reached by analyzing the dimensionless autocorrelato
level velocities of electron in a disordered metallic sam
with a ring topology, enclosing a magnetic fluxw. A dia-
grammatic perturbation technique was used in the rang
fluxes g21/2!w!1 @1#, while the opposite limit,w,g21/2

@2#, has been treated within the framework of the supersy
metry formalism@5,6#. @Hereg@1 is the dimensionless con
ductance.# In this particular problem, the parametric correl
tions take a universal form involving the rescaled parame
X254pgw2, with g5Ec /D, the ratio of the Thouless en
ergy and the mean level spacing. Numerical simulations h
supported the point that the universal character of param
level statistics extends to a wider class of chaotic syste
without disorder@chaotic billiards# whose Hamiltonian de-
pends on some external parameterx. In such systems, the
spectral fluctuations taken at different values ofx become
system—independent after rescaling,x→X, which involves
solely the ‘‘generalized’’ dimensionless conductanceg
5(4p)21D22^@]En(x)/]x#2&. Along with the diagram-
matic technique and the supersymmetry formalism, the p
metric correlations have been studied in detail within
model of Brownian motion@7,8#, in the semiclassical limit
@9,10#, and by the loop-equations technique@11#.

A further burst of activity in the field occurred after it wa
realized @3,7,12–15# that the problem of parametric leve
correlations is identical to the ground-state dynamics of
integrable many-body quantum model known as Caloge
Sutherland-Moser@CSM# system. This gave new informatio
about CSM space-time (r ,t) correlation functions that can
be obtained from parametric density-density correlat
^n(E,0)n(E8,w)& involving only two different external pa
rameters by mapping@3# X2→22i t,E/D→r . For the more
general situation of higher-order correlation functions
connection between CSM fermions and quantum chaotic
tems has been established@15# as well by using the super
symmetry technique; however, it has not led to any expl
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analytical results beyond the two-point correlators due
enormous increase of number of entries in the superma
fields, thereby making any explicit calculations in that a
proach impossible. Extensions to higher-order statistics
be performed by using an involved method of different
equations for quantum correlation functions proposed in
much earlier work@16#.

In the present paper we address the issue of higher-o
parametric level statistics within the framework of the ra
dom matrix theory, by appealing to the model of coupl
Hermitian random matrices@17#. The latter enables us to
provide a complete information about parametric corre
tions of single electron level densities in the presence of
multicomponent flux perturbing a disordered system, char
terized by a dimensionless conductanceg@1. To the best of
our knowledge, this is the first detailed study of higher-ord
parametric level statistics in disordered systems that ad
the conventional language of the random matrix theory.

In what follows we consider a weakly disordered syste
fallen in the universal~metallic! regime, g@1, which is
known @5# to be modeled by invariant ensembles of lar
random matrices. Assuming that the time reversal symm
is completely broken~unitary symmetry!, one can statisti-
cally describe an unperturbed single electron spectrum b
Gaussian unitary ensemble@GUE# of large N3N random
matricesH0 distributed in accordance with the probabili
densityP@H0#}exp$2TrH0

2%. Such a distributionP@H0# in-
duces the energy scaleD being the mean level spacing,D
5p(2N)21/2. Let us now apply a Gaussian perturbatio
consisting ofd componentsw¢ d5(f1 , . . . ,fd), which does
not change the global unitary symmetry, and which driv
the HamiltonianH0 to H5H01(k51

d fkHk , with matrices
Hk drawn from GUE: P@Hk#}exp$2Tr Hk

2% for k
51, . . . ,d. This choice corresponds to the equal ‘‘strength
of each component of the ‘‘vector’’ perturbationw¢ d since the
averagê (Hk)mn(Hk)m8n8& is independent of the indexk. The
quantity that provides the most detailed information ab
parametric correlations in the case of the multicompon
perturbationw¢ d is the correlator of level densitiesn(E,w¢ s)
5Tr d(E2H02(k51

s fkHk) taken at both different value
3720 ©1999 The American Physical Society
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of energyE and ofs. For this reason, we will concentrate o
the dimensionless multipoint correlator

kp0 , . . . ,pd
~$v~0!%,0W ; . . . ;$v~d!%,w¢ d!

5DmK )
i 051

p0

n~E1v i 0
~0! ,0W ! )

i 151

p1

n~E1v i 1
~1! ,w¢ 1!•••

3 )
i d51

pd

n~E1v i d
~d! ,w¢ d!L , ~1!

wherem5p01•••1pd , and the angular brackets stand f
averaging over ensembles of Hermitian matricesHk with k
50, . . . ,d. Equation~1! can be rewritten as a (d11) mul-

tiple matrix integral over matricesH̃05H0 and H̃s.05H0

1(k51
s fkHk ,

kp0 , . . . ,pd
}E dH̃0•••E dH̃d )

s50

d

)
i s51

ps

Trd~E1v i s
~s!2H̃s!

3expH 2TrF (
a50

d

~fa
221fa11

22 !H̃a
2

22 (
a50

d21

fa11
22 H̃aH̃a11G J , ~2!
e
at
with f051 andfd115`. @This convention is relaxed ev
erywhere below Eq.~9!.# We notice that the strengthsfk(k
51, . . . ,d) of the perturbation are supposed to be sm
fk!1. This is justified in the thermodynamic limitN→`,
since for Gaussian perturbation accepted above,fk are
known to scale withN asfk5pN21/2Xk , with Xk being the
set of dimensionless parameters of order unity@18#.

Our crucial observation is that Eq.~2! can be interpreted
as a density-density correlator in the effective model ofd
11) Hermitian random matrices coupled in a chain: Ea

matrix H̃a is represented by a point, and two adjacent ma

cesH̃a andH̃a11 are joined by a line if the coupling of the

type exp$caTr H̃aH̃a11% is present in Eq.~2!. In this situa-
tion, the joint probability density of eigenvalues of all th
matrices in the chain can be deduced through the Itzyks
Zuber integral@19# making the model of random Hermitia
matrices coupled in a chain to be a completely solvable
accordance with the Eynard-Mehta theorem@17#, the dimen-
sionless correlatorkp0 , . . . ,pd

can be represented as a dete

minant of them3m block matrix, m5p01•••1pd , con-
sisting of (d11)3(d11) rectangular submatricesKa,b

with a,b51, . . . ,(d11), each of them havingpa21

3pb21 entries@20#,
kp0 , . . . ,pd
5DetS @K1,1~v i 0

~0! ,v j 0

~0!!#p03p0
@K1,2~v i 0

~0! ,v j 1

~1!!#p03p1
••• @K1,d11~v i 0

~0! ,v j d

~d!!#p03pd

@K2,1~v i 1
~1! ,v j 0

~0!!#p13p0
@K2,2~v i 1

~1! ,v j 1

~1!!#p13p1
••• @K2,d11~v i 1

~1! ,v j d

~d!!#p13pd

A A � A

@Kd11,1~v i d
~d! ,v j 0

~0!!#pd3p0
@Kd11,2~v i d

~d! ,v j 1

~1!!#pd3p1
••• @Kd11,d11~v i d

~d! ,v j d

~d!!#pd3pd

D . ~3!
-

the

in
The matrix kernelsKa,b in Eq. ~3! are

Ka,b~j,h!5D@Ha,b~j,h!2Ea,b~j,h!#, ~4!

where

Ha,b~j,h!5 (
j 50

N21
1

hj
Qa, j~j!Pb, j~h!, ~5!

and

Ea,b~j,h!5~wa* •* wb21!~j,h! ~6!

for 1<a,b<d11; otherwise,Ea,b50. Here the partial
weightswa are

wa~j,h!5expS 2
Va~j!1Va11~h!

2
12fa

22jh D , ~7a!

Va~j!5~fa21
22 1fa

22!@da,11da,d1111#j2 ~7b!

@compare with the weight of the matrix model, Eq.~2!#. The
notation (wa* •* wb21)(j,h) stands for the product of th
partial weightsw integrated over internal variables of th
product. Two sets of orthogonal functionsPa, j andQb, j en-
tering Eq.~5! are determined recursively,

Pa, j~j!5E dhPa21,j~h!wa21~h,j!, ~8a!

Qb, j~j!5E dhwb~j,h!Qb11,j~h!, ~8b!

for 2<a<d11 and 1<b<d; the starting points of the re
cursions ~8a! and ~8b! are the polynomialsP1,j5Pj and
Qd11,j5Qj orthogonal with respect to anonlocal weight
W(j,h)5(w1* •* wd)(j,h),

E djE dhPi~j!W~j,h!Qj~h!5hjd i j . ~9!

Close inspection of the equations above shows that
basic orthogonal polynomialsPj andQj can be expressed in
terms of Hermite polynomials, Pj (j)5H j (j),Qj (j)
5H j (j@11(k51

d fk
2#21/2). Then, step-by-step integrations

Eqs.~8! yield
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Pa, j~j!5

)
k51

a21

~fkAp!

F11 (
k51

a21

fk
2G j /2 e2Fa~j!F j S j

Ca21
D , ~10a!

Qa, j~j!5

)
k5a

d

~fkAp!

F11 (
k5a

d

fk
2G j /2 eFa~j!F j S j

Ca21
D , ~10b!

where we have introduced the Hermite functions@21#
F j (j)5exp@2j2/2#H j (j). Also, we defined the function

Fa~j!5
j2

2
@Ca21

22 1~fa
222fa21

22 !#, ~11!

and the constantCa5@11(k51
a fk

2#1/2. @In order to compac-
tify the formulas, it is agreed from now on thatfd11

5fd ,f05f1 , (k5a
b,a(•••)50, and )k5a

b,a(•••)51]. One
can verify that the orthogonality relation~9! is satisfied with

hj52 j j !ApF11 (
k51

d

fk
2G2 j /2

)
k51

d

~fkAp!, ~12!

so that the first term in Eq.~4! is

Ha,a~j,h!5eFa~j!2Fa~h! (
j 50

N21

F j S j

Ca21
DF j S h

Ca21
D ,

~13a!

Ha,b~j,h!5 )
k5a

b21

~fkAp!eFa~j!2Fb~h!

3 (
j 50

N21 F j S j

Ca21
DF j S h

Cb21
D

F11 (
k5a

b21

fk
2G j /2 , ~13b!

Ha.b~j,h!5
1

)
k5b

a21

~fkAp!

eFa~j!2Fb~h!

3 (
j 50

N21 F j S j

Ca21
DF j S h

Cb21
D

F11 (
k5b

a21

fk
2G2 j /2 . ~13c!

The second term in Eq.~4! is found from Eqs.~6! and ~7!,

Ea,b~j,h!5

)
k5a

b21

~fkAp!eGa~j!2Gb~h!

Ap (
k5a

b21

fk
2

expH 2
~j2h!2

(
k5a

b21

fk
2 J
~14!

for b>a12, while Ea,a50 and Ea,a115wa . Here the
function Ga reads
Ga~j!5
j2

2
~fa

222fa21
22 !. ~15!

Now, we are in position to compute the matrix kerne
Ka,b via Eqs.~4!, ~13!, and ~14! in the leading order inN
→` and keepingXk5fkN

1/2/p;O(1) fixed. The simplest,
diagonal kernel Ka,a can be evaluated through th
Christoffel-Darboux formula@22#, supplemented by the as
ymptotics of Hermite functions,

H F2N~ t !

F2N11~ t !J .
~21!N

N1/4Ap
H cos~2tN1/2!

sin~2tN1/2!
J ~16!

wheret;DO(N0). One obtains,

Ka,a~j,h!5eGa~j!2Ga~h!
sin@pD21~j2h!#

pD21~j2h!
. ~17!

Two other cases,a,b anda.b, demand more effort. Fo
a,b we represent the sum forHa,b in Eq. ~13b! as a
difference of two series,( j 50

` (•••)2( j 5N
` (•••). The first

sum is exactly computable by making use of the Meh
summation formula@22#. In the thermodynamic limit, this
procedure yields a term that is equal toEa,b in Eq. ~14!, and
therefore it gets canceled from the expression~4! for Ka,b ,
which is completely due to the remaining sum( j 5N

` (•••).
To evaluate the latter, we replace the sum overj by an inte-
gral to get

Ka,b~j,h!52 )
k5a

b21

~fkAp!eGa~j!2Gb~h!

3E
1

`

dl1 cosH p
j2h

D
l1J

3expS 2
p2l1

2

2 (
k5a

b21

Xk
2D . ~18!

In the casea.b the large-j terms in Eq.~13c! yield the
main contribution to the sum due to the factor@1
1(k5b

a21fk
2# j /2. Then, passing from summation to integratio

we derive

Ka.b~j,h!5
1

)
k5b

a21

~fkAp!

eGa~j!2Gb~h!

3E
0

1

dl cosS p
j2h

D
l DexpS p2l2

2 (
k5b

a21

Xk
2D .

~19!

Notice that the structure of the block matrix in Eq.~3! allows
one to simultaneously suppress the prefactors of the f
)k(•••)e(•••) in Eqs. ~17!, ~18!, and ~19!. Having this in
mind, we come down to the closed analytical determinan
expression Eq.~3! for (p01•••1pd)-point density-density
correlator withKa,b replaced byMa,b ,

Ma,a~j,h![
sin@pD21~j2h!#

pD21~j2h!
, ~20a!
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Ma,b~j,h![2E
1

`

dl1 cosS p
j2h

D
l1D

3expS 2
p2l1

2

2 (
k5a

b21

Xk
2D , ~20b!

Ma.b~j,h![E
0

1

dl cosS p
j2h

D
l DexpS p2l2

2 (
k5b

a21

Xk
2D .

~20c!

Equations~3! and~20! are the main result of the paper. The
provide a detailed information about higher order parame
density-density correlations in the case of multiparame
perturbation of disordered system. Several particular corr
tors can be readily deduced from our general expression~i!
For the scalar perturbation, one obtains thatkp,q

5Dp1q^) i 51
p n(E1v i ,0)) j 51

q n(E1V j ,f)& is determined
by

kp,q[DetS Ma,a~v i ,v j ! Ma,b~v i ,V j !

Ma.b~V i ,v j ! Ma,a~V i ,V j !
D , ~21!
tt

,

-

tt

v

ic
r

a-

whereMa,b are those given by Eqs.~20! with (kXk
2→X2;

~ii ! By replacement@3# v i /D→r i ,V i /D→Ri and X2→
22i t in Eq. ~21! one arrives at the space-time correlati
function in the CSM model with a couplingl51; here the
coordinates$r i% correspond to the timet50, while the$Ri%
refer to the timet5t.

In summary, we presented a random-matrix-theory tre
ment of the problem of higher-order parametric spectral s
tistics in disordered systems with broken time reveral sy
metry in the presence of the multiparameter perturbation
complete analytical solution was based on the mapping
the initial problem onto a model of random Hermitian mat
ces coupled in a chain. As a particular case of the gen
solution, given by Eqs.~3! and ~20! the multipoint paramet-
ric spectral correlator Eq.~21! for the scalar perturbation ha
been obtained. Together with a well-established corresp
dence between CSM fermions and parametric level statis
the latter expression provides an information about
space-time correlation function in the Calogero-Sutherla
Moser model of free, noninteracting fermions.

The authors thank I. Yurkevich for bringing Ref.@16# to
our attention.
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