Higher-order parametric level statistics in disordered systems

E. Kanzieper ${ }^{1}$ and V. Freilikher ${ }^{2}$
${ }^{1}$ The Abdus Salam International Centre for Theoretical Physics, P.O.B. 586, 34100 Trieste, Italy
${ }^{2}$ The Jack and Pearl Resnick Institute of Advanced Technology, Department of Physics, Bar-Ilan University, 52900 Ramat-Gan, Israel

(Received 20 February 1998; revised manuscript received 13 August 1998)

Abstract

Higher-order parametric level correlations in disordered systems with broken time-reversal symmetry are studied by mapping the problem onto a model of coupled Hermitian random matrices. Closed analytical expression is derived for a parametric density-density correlation function that corresponds to a perturbation of disordered system by a multicomponent flux. [S1063-651X(99)14503-3]

PACS number(s): 05.45.-a, 71.55.Jv, 73.23.-b

Parametric level statistics reflect the response of the spectrum $\left\{E_{n}\right\}$ of complex chaotic systems to an external perturbation. A few years ago it was shown [1-3] that a system whose spectrum follows closely the universal fluctuations predicted by the random matrix theory [4] should also exhibit a universal parametric behavior. This conclusion was reached by analyzing the dimensionless autocorrelator of level velocities of electron in a disordered metallic sample with a ring topology, enclosing a magnetic flux φ. A diagrammatic perturbation technique was used in the range of fluxes $g^{-1 / 2} \ll \varphi \ll 1$ [1], while the opposite limit, $\varphi<g^{-1 / 2}$ [2], has been treated within the framework of the supersymmetry formalism [5,6]. [Here $g \geqslant 1$ is the dimensionless conductance.] In this particular problem, the parametric correlations take a universal form involving the rescaled parameter $X^{2}=4 \pi g \varphi^{2}$, with $g=E_{c} / \Delta$, the ratio of the Thouless energy and the mean level spacing. Numerical simulations have supported the point that the universal character of parametric level statistics extends to a wider class of chaotic systems without disorder [chaotic billiards] whose Hamiltonian depends on some external parameter x. In such systems, the spectral fluctuations taken at different values of x become system-independent after rescaling, $x \rightarrow X$, which involves solely the "generalized" dimensionless conductance g $=(4 \pi)^{-1} \Delta^{-2}\left\langle\left[\partial E_{n}(x) / \partial x\right]^{2}\right\rangle$. Along with the diagrammatic technique and the supersymmetry formalism, the parametric correlations have been studied in detail within the model of Brownian motion [7,8], in the semiclassical limit $[9,10]$, and by the loop-equations technique [11].

A further burst of activity in the field occurred after it was realized $[3,7,12-15]$ that the problem of parametric level correlations is identical to the ground-state dynamics of the integrable many-body quantum model known as Calogero-Sutherland-Moser [CSM] system. This gave new information about CSM space-time (r, τ) correlation functions that can be obtained from parametric density-density correlators $\left\langle\nu(E, 0) \nu\left(E^{\prime}, \varphi\right)\right\rangle$ involving only two different external parameters by mapping [3] $X^{2} \rightarrow-2 i \tau, E / \Delta \rightarrow r$. For the more general situation of higher-order correlation functions the connection between CSM fermions and quantum chaotic systems has been established [15] as well by using the supersymmetry technique; however, it has not led to any explicit
analytical results beyond the two-point correlators due to enormous increase of number of entries in the supermatrix fields, thereby making any explicit calculations in that approach impossible. Extensions to higher-order statistics can be performed by using an involved method of differential equations for quantum correlation functions proposed in the much earlier work [16].

In the present paper we address the issue of higher-order parametric level statistics within the framework of the random matrix theory, by appealing to the model of coupled Hermitian random matrices [17]. The latter enables us to provide a complete information about parametric correlations of single electron level densities in the presence of the multicomponent flux perturbing a disordered system, characterized by a dimensionless conductance $g \gg 1$. To the best of our knowledge, this is the first detailed study of higher-order parametric level statistics in disordered systems that adopts the conventional language of the random matrix theory.

In what follows we consider a weakly disordered system fallen in the universal (metallic) regime, $g \gg 1$, which is known [5] to be modeled by invariant ensembles of large random matrices. Assuming that the time reversal symmetry is completely broken (unitary symmetry), one can statistically describe an unperturbed single electron spectrum by a Gaussian unitary ensemble [GUE] of large $N \times N$ random matrices H_{0} distributed in accordance with the probability density $\mathcal{P}\left[H_{0}\right] \propto \exp \left\{-\operatorname{Tr} H_{0}^{2}\right\}$. Such a distribution $\mathcal{P}\left[H_{0}\right]$ induces the energy scale Δ being the mean level spacing, Δ $=\pi(2 N)^{-1 / 2}$. Let us now apply a Gaussian perturbation consisting of d components $\overrightarrow{\boldsymbol{\varphi}}_{d}=\left(\phi_{1}, \ldots, \phi_{d}\right)$, which does not change the global unitary symmetry, and which drives the Hamiltonian H_{0} to $H=H_{0}+\sum_{k=1}^{d} \phi_{k} H_{k}$, with matrices H_{k} drawn from GUE: $\mathcal{P}\left[H_{k}\right] \propto \exp \left\{-\operatorname{Tr} H_{k}^{2}\right\}$ for k $=1, \ldots, d$. This choice corresponds to the equal "strength", of each component of the 'vector'' perturbation $\overrightarrow{\boldsymbol{\varphi}}_{d}$ since the average $\left\langle\left(H_{k}\right)_{\mu \nu}\left(H_{k}\right)_{\mu^{\prime} \nu^{\prime}}\right\rangle$ is independent of the index k. The quantity that provides the most detailed information about parametric correlations in the case of the multicomponent perturbation $\overrightarrow{\boldsymbol{\varphi}}_{d}$ is the correlator of level densities $\nu\left(E, \overrightarrow{\boldsymbol{\varphi}}_{\sigma}\right)$ $=\operatorname{Tr} \delta\left(E-H_{0}-\Sigma_{k=1}^{\sigma} \phi_{k} H_{k}\right)$ taken at both different values
of energy E and of σ. For this reason, we will concentrate on the dimensionless multipoint correlator

$$
\begin{align*}
& k_{p_{0}, \ldots, p_{d}}\left(\left\{\omega^{(0)}\right\}, \overrightarrow{0} ; \ldots ;\left\{\omega^{(d)}\right\}, \overrightarrow{\boldsymbol{\varphi}}_{d}\right) \\
& =\Delta^{m}\left(\prod_{i_{0}=1}^{p_{0}} \nu\left(E+\omega_{i_{0}}^{(0)}, \overrightarrow{0}\right) \prod_{i_{1}=1}^{p_{1}} \nu\left(E+\omega_{i_{1}}^{(1)}, \overrightarrow{\boldsymbol{\varphi}}_{1}\right) \cdots\right. \\
& \left.\quad \times \prod_{i_{d}=1}^{p_{d}} \nu\left(E+\omega_{i_{d}}^{(d)}, \overrightarrow{\boldsymbol{\varphi}}_{d}\right)\right) \tag{1}
\end{align*}
$$

where $m=p_{0}+\cdots+p_{d}$, and the angular brackets stand for averaging over ensembles of Hermitian matrices H_{k} with k $=0, \ldots, d$. Equation (1) can be rewritten as a $(d+1)$ multiple matrix integral over matrices $\tilde{H}_{0}=H_{0}$ and $\tilde{H}_{\sigma>0}=H_{0}$ $+\Sigma_{k=1}^{\sigma} \phi_{k} H_{k}$,

$$
\begin{align*}
k_{p_{0}, \ldots, p_{d}} \propto & \int d \tilde{H}_{0} \cdots \int d \tilde{H}_{d} \prod_{\sigma=0}^{d} \prod_{i_{\sigma}=1}^{p_{\sigma}} \operatorname{Tr} \delta\left(E+\omega_{i_{\sigma}}^{(\sigma)}-\tilde{H}_{\sigma}\right) \\
& \times \exp \left\{-\operatorname{Tr}\left[\sum_{\alpha=0}^{d}\left(\phi_{\alpha}^{-2}+\phi_{\alpha+1}^{-2}\right) \tilde{H}_{\alpha}^{2}\right.\right. \\
& \left.\left.-2 \sum_{\alpha=0}^{d-1} \phi_{\alpha+1}^{-2} \tilde{H}_{\alpha} \tilde{H}_{\alpha+1}\right]\right\}, \tag{2}
\end{align*}
$$

with $\phi_{0}=1$ and $\phi_{d+1}=\infty$. [This convention is relaxed everywhere below Eq. (9).] We notice that the strengths $\phi_{k}(k$ $=1, \ldots, d)$ of the perturbation are supposed to be small, $\phi_{k} \ll 1$. This is justified in the thermodynamic limit $N \rightarrow \infty$, since for Gaussian perturbation accepted above, ϕ_{k} are known to scale with N as $\phi_{k}=\pi N^{-1 / 2} X_{k}$, with X_{k} being the set of dimensionless parameters of order unity [18].

Our crucial observation is that Eq. (2) can be interpreted as a density-density correlator in the effective model of (d $+1)$ Hermitian random matrices coupled in a chain: Each matrix \tilde{H}_{α} is represented by a point, and two adjacent matrices \tilde{H}_{α} and $\tilde{H}_{\alpha+1}$ are joined by a line if the coupling of the type $\exp \left\{c_{\alpha} \operatorname{Tr} \tilde{H}_{\alpha} \tilde{H}_{\alpha+1}\right\}$ is present in Eq. (2). In this situation, the joint probability density of eigenvalues of all the matrices in the chain can be deduced through the ItzyksonZuber integral [19] making the model of random Hermitian matrices coupled in a chain to be a completely solvable. In accordance with the Eynard-Mehta theorem [17], the dimensionless correlator $k_{p_{0}, \ldots, p_{d}}$ can be represented as a determinant of the $m \times m$ block matrix, $m=p_{0}+\cdots+p_{d}$, consisting of $(d+1) \times(d+1)$ rectangular submatrices $K_{\alpha, \beta}$ with $\alpha, \beta=1, \ldots,(d+1)$, each of them having $p_{\alpha-1}$ $\times p_{\beta-1}$ entries [20],

$$
k_{p_{0}, \ldots, p_{d}}=\operatorname{Det}\left(\begin{array}{cccc}
{\left[K_{1,1}\left(\omega_{i_{0}}^{(0)}, \omega_{j_{0}}^{(0)}\right)\right]_{p_{0} \times p_{0}}} & {\left[K_{1,2}\left(\omega_{i_{0}}^{(0)}, \omega_{j_{1}}^{(1)}\right)\right]_{p_{0} \times p_{1}}} & \cdots & {\left[K_{1, d+1}\left(\omega_{i_{0}}^{(0)}, \omega_{j_{d}}^{(d)}\right)\right]_{p_{0} \times p_{d}}} \tag{3}\\
{\left[K_{2,1}\left(\omega_{i_{1}}^{(1)}, \omega_{j_{0}}^{(0)}\right)\right]_{p_{1} \times p_{0}}} & {\left[K_{2,2}\left(\omega_{i_{1}}^{(1)}, \omega_{j_{1}}^{(1)}\right)\right]_{p_{1} \times p_{1}}} & \cdots & {\left[K_{2, d+1}\left(\omega_{i_{1}}^{(1)}, \omega_{j_{d}}^{(d)}\right)\right]_{p_{1} \times p_{d}}} \\
\vdots & \vdots & \ddots & \vdots \\
{\left[K_{d+1,1}\left(\omega_{i_{d}}^{(d)}, \omega_{j_{0}}^{(0)}\right)\right]_{p_{d} \times p_{0}}} & {\left[K_{d+1,2}\left(\omega_{i_{d}}^{(d)}, \omega_{j_{1}}^{(1)}\right)\right]_{p_{d} \times p_{1}}} & \cdots & {\left[K_{d+1, d+1}\left(\omega_{i_{d}}^{(d)}, \omega_{j_{d}}^{(d)}\right)\right]_{p_{d} \times p_{d}}}
\end{array}\right) .
$$

The matrix kernels $K_{\alpha, \beta}$ in Eq. (3) are

$$
\begin{equation*}
K_{\alpha, \beta}(\xi, \eta)=\Delta\left[H_{\alpha, \beta}(\xi, \eta)-E_{\alpha, \beta}(\xi, \eta)\right] \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{\alpha, \beta}(\xi, \eta)=\sum_{j=0}^{N-1} \frac{1}{h_{j}} Q_{\alpha, j}(\xi) P_{\beta, j}(\eta) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{\alpha, \beta}(\xi, \eta)=\left(w_{\alpha} * \cdot * w_{\beta-1}\right)(\xi, \eta) \tag{6}
\end{equation*}
$$

for $1 \leqslant \alpha<\beta \leqslant d+1$; otherwise, $E_{\alpha, \beta}=0$. Here the partial weights w_{α} are

$$
\begin{align*}
w_{\alpha}(\xi, \eta) & =\exp \left(-\frac{V_{\alpha}(\xi)+V_{\alpha+1}(\eta)}{2}+2 \phi_{\alpha}^{-2} \xi \eta\right) \tag{7a}\\
V_{\alpha}(\xi) & =\left(\phi_{\alpha-1}^{-2}+\phi_{\alpha}^{-2}\right)\left[\delta_{\alpha, 1}+\delta_{\alpha, d+1}+1\right] \xi^{2} \tag{7b}
\end{align*}
$$

[compare with the weight of the matrix model, Eq. (2)]. The notation $\left(w_{\alpha} * \cdot * w_{\beta-1}\right)(\xi, \eta)$ stands for the product of the partial weights w integrated over internal variables of that
product. Two sets of orthogonal functions $P_{\alpha, j}$ and $Q_{\beta, j}$ entering Eq. (5) are determined recursively,

$$
\begin{align*}
P_{\alpha, j}(\xi) & =\int d \eta P_{\alpha-1, j}(\eta) w_{\alpha-1}(\eta, \xi) \tag{8a}\\
Q_{\beta, j}(\xi) & =\int d \eta w_{\beta}(\xi, \eta) Q_{\beta+1, j}(\eta) \tag{8b}
\end{align*}
$$

for $2 \leqslant \alpha \leqslant d+1$ and $1 \leqslant \beta \leqslant d$; the starting points of the recursions (8a) and (8b) are the polynomials $P_{1, j}=P_{j}$ and $Q_{d+1, j}=Q_{j}$ orthogonal with respect to a nonlocal weight $W(\xi, \eta)=\left(w_{1} * \cdot * w_{d}\right)(\xi, \eta)$,

$$
\begin{equation*}
\int d \xi \int d \eta P_{i}(\xi) W(\xi, \eta) Q_{j}(\eta)=h_{j} \delta_{i j} \tag{9}
\end{equation*}
$$

Close inspection of the equations above shows that the basic orthogonal polynomials P_{j} and Q_{j} can be expressed in terms of Hermite polynomials, $P_{j}(\xi)=H_{j}(\xi), Q_{j}(\xi)$ $=H_{j}\left(\xi\left[1+\sum_{k=1}^{d} \phi_{k}^{2}\right]^{-1 / 2}\right)$. Then, step-by-step integrations in Eqs. (8) yield

$$
\begin{gather*}
P_{\alpha, j}(\xi)=\frac{\prod_{k=1}^{\alpha-1}\left(\phi_{k} \sqrt{\pi}\right)}{\left[1+\sum_{k=1}^{\alpha-1} \phi_{k}^{2}\right]^{j / 2} e^{-F_{\alpha}(\xi)} \Phi_{j}\left(\frac{\xi}{C_{\alpha-1}}\right),} \tag{10a}\\
Q_{\alpha, j}(\xi)=\frac{\prod_{k=\alpha}^{d}\left(\phi_{k} \sqrt{\pi}\right)}{\left[1+\sum_{k=\alpha}^{d} \phi_{k}^{2}\right]^{j / 2} e^{F_{\alpha}(\xi)} \Phi_{j}\left(\frac{\xi}{C_{\alpha-1}}\right),} \tag{10b}
\end{gather*}
$$

where we have introduced the Hermite functions [21] $\Phi_{j}(\xi)=\exp \left[-\xi^{2} / 2\right] H_{j}(\xi)$. Also, we defined the function

$$
\begin{equation*}
F_{\alpha}(\xi)=\frac{\xi^{2}}{2}\left[C_{\alpha-1}^{-2}+\left(\phi_{\alpha}^{-2}-\phi_{\alpha-1}^{-2}\right)\right], \tag{11}
\end{equation*}
$$

and the constant $C_{\alpha}=\left[1+\Sigma_{k=1}^{\alpha} \phi_{k}^{2}\right]^{1 / 2}$. [In order to compactify the formulas, it is agreed from now on that ϕ_{d+1} $=\phi_{d}, \phi_{0}=\phi_{1}, \Sigma_{k=\alpha}^{\beta<\alpha}(\cdots)=0$, and $\left.\Pi_{k=\alpha}^{\beta<\alpha}(\cdots)=1\right]$. One can verify that the orthogonality relation (9) is satisfied with

$$
\begin{equation*}
h_{j}=2^{j} j!\sqrt{\pi}\left[1+\sum_{k=1}^{d} \phi_{k}^{2}\right]^{-j / 2} \prod_{k=1}^{d}\left(\phi_{k} \sqrt{\pi}\right), \tag{12}
\end{equation*}
$$

so that the first term in Eq. (4) is

$$
\begin{align*}
& H_{\alpha, \alpha}(\xi, \eta)=e^{F_{\alpha}(\xi)-F_{\alpha}(\eta)} \sum_{j=0}^{N-1} \Phi_{j}\left(\frac{\xi}{C_{\alpha-1}}\right) \Phi_{j}\left(\frac{\eta}{C_{\alpha-1}}\right), \tag{13a}\\
& H_{\alpha<\beta}(\xi, \eta)= \prod_{k=\alpha}^{\beta-1}\left(\phi_{k} \sqrt{\pi}\right) e^{F_{\alpha}(\xi)-F_{\beta}(\eta)} \\
& \times \sum_{j=0}^{N-1} \frac{\Phi_{j}\left(\frac{\xi}{C_{\alpha-1}}\right) \Phi_{j}\left(\frac{\eta}{C_{\beta-1}}\right)}{\left[1+\sum_{k=\alpha}^{\beta-1} \phi_{k}^{2}\right]^{j / 2}}, \tag{13b}\\
& H_{\alpha>\beta}(\xi, \eta)= \frac{1}{\prod_{k-1}^{\alpha-1}\left(\phi_{k} \sqrt{\pi}\right)} e^{F_{\alpha}(\xi)-F_{\beta}(\eta)} \\
& \times \sum_{j=0}^{N-1} \frac{\Phi_{j}\left(\frac{\xi}{C_{\alpha-1}}\right) \Phi_{j}\left(\frac{\eta}{C_{\beta-1}}\right)}{\left[1+\sum_{k=\beta}^{\alpha-1} \phi_{k}^{2}\right]^{-j / 2}} .
\end{align*}
$$

The second term in Eq. (4) is found from Eqs. (6) and (7),

$$
\begin{equation*}
E_{\alpha, \beta}(\xi, \eta)=\frac{\prod_{k=\alpha}^{\beta-1}\left(\phi_{k} \sqrt{\pi}\right) \mathrm{e}^{G_{\alpha}(\xi)-G_{\beta}(\eta)}}{\sqrt{\pi \sum_{k=\alpha}^{\beta-1} \phi_{k}^{2}}} \exp \left\{-\frac{(\xi-\eta)^{2}}{\sum_{k=\alpha}^{\beta-1} \phi_{k}^{2}}\right\} \tag{14}
\end{equation*}
$$

for $\beta \geqslant \alpha+2$, while $E_{\alpha, \alpha}=0$ and $E_{\alpha, \alpha+1}=w_{\alpha}$. Here the function G_{α} reads

$$
\begin{equation*}
G_{\alpha}(\xi)=\frac{\xi^{2}}{2}\left(\phi_{\alpha}^{-2}-\phi_{\alpha-1}^{-2}\right) . \tag{15}
\end{equation*}
$$

Now, we are in position to compute the matrix kernels $K_{\alpha, \beta}$ via Eqs. (4), (13), and (14) in the leading order in N $\rightarrow \infty$ and keeping $X_{k}=\phi_{k} N^{1 / 2} / \pi \sim O(1)$ fixed. The simplest, diagonal kernel $K_{\alpha, \alpha}$ can be evaluated through the Christoffel-Darboux formula [22], supplemented by the asymptotics of Hermite functions,

$$
\left\{\begin{array}{c}
\Phi_{2 N}(t) \tag{16}\\
\Phi_{2 N+1}(t)
\end{array}\right\} \simeq \frac{(-1)^{N}}{N^{1 / 4} \sqrt{\pi}}\left\{\begin{array}{l}
\cos \left(2 t N^{1 / 2}\right) \\
\sin \left(2 t N^{1 / 2}\right)
\end{array}\right\}
$$

where $t \sim \Delta O\left(N^{0}\right)$. One obtains,

$$
\begin{equation*}
K_{\alpha, \alpha}(\xi, \eta)=e^{G_{\alpha}(\xi)-G_{\alpha}(\eta)} \frac{\sin \left[\pi \Delta^{-1}(\xi-\eta)\right]}{\pi \Delta^{-1}(\xi-\eta)} . \tag{17}
\end{equation*}
$$

Two other cases, $\alpha<\beta$ and $\alpha>\beta$, demand more effort. For $\alpha<\beta$ we represent the sum for $H_{\alpha<\beta}$ in Eq. (13b) as a difference of two series, $\Sigma_{j=0}^{\infty}(\cdots)-\Sigma_{j=N}^{\infty}(\cdots)$. The first sum is exactly computable by making use of the Mehler summation formula [22]. In the thermodynamic limit, this procedure yields a term that is equal to $E_{\alpha, \beta}$ in Eq. (14), and therefore it gets canceled from the expression (4) for $K_{\alpha<\beta}$, which is completely due to the remaining sum $\sum_{j=N}^{\infty}(\cdots)$. To evaluate the latter, we replace the sum over j by an integral to get

$$
\begin{align*}
K_{\alpha<\beta}(\xi, \eta)= & -\prod_{k=\alpha}^{\beta-1}\left(\phi_{k} \sqrt{\pi}\right) e^{G_{\alpha}(\xi)-G_{\beta}(\eta)} \\
& \times \int_{1}^{\infty} d \lambda_{1} \cos \left\{\pi \frac{\xi-\eta}{\Delta} \lambda_{1}\right\} \\
& \times \exp \left(-\frac{\pi^{2} \lambda_{1}^{2}}{2} \sum_{k=\alpha}^{\beta-1} X_{k}^{2}\right) \tag{18}
\end{align*}
$$

In the case $\alpha>\beta$ the large- j terms in Eq. (13c) yield the main contribution to the sum due to the factor [1 $\left.+\Sigma_{k=\beta}^{\alpha-1} \phi_{k}^{2}\right]^{j / 2}$. Then, passing from summation to integration, we derive

$$
\begin{align*}
K_{\alpha>\beta}(\xi, \eta)= & \frac{1}{\alpha-1} e^{G_{\alpha}(\xi)-G_{\beta}(\eta)} \\
& \prod_{k=\beta}\left(\phi_{k} \sqrt{\pi}\right) \tag{19}\\
& \times \int_{0}^{1} d \lambda \cos \left(\pi \frac{\xi-\eta}{\Delta} \lambda\right) \exp \left(\frac{\pi^{2} \lambda^{2}}{2} \sum_{k=\beta}^{\alpha-1} X_{k}^{2}\right) .
\end{align*}
$$

Notice that the structure of the block matrix in Eq. (3) allows one to simultaneously suppress the prefactors of the form $\Pi_{k}(\cdots) e^{(\cdots)}$ in Eqs. (17), (18), and (19). Having this in mind, we come down to the closed analytical determinantal expression Eq. (3) for ($p_{0}+\cdots+p_{d}$)-point density-density correlator with $K_{\alpha, \beta}$ replaced by $M_{\alpha, \beta}$,

$$
\begin{equation*}
M_{\alpha, \alpha}(\xi, \eta) \equiv \frac{\sin \left[\pi \Delta^{-1}(\xi-\eta)\right]}{\pi \Delta^{-1}(\xi-\eta)}, \tag{20a}
\end{equation*}
$$

$$
\begin{gather*}
M_{\alpha<\beta}(\xi, \eta) \equiv-\int_{1}^{\infty} d \lambda_{1} \cos \left(\pi \frac{\xi-\eta}{\Delta} \lambda_{1}\right) \\
 \tag{20b}\\
\times \exp \left(-\frac{\pi^{2} \lambda_{1}^{2}}{2} \sum_{k=\alpha}^{\beta-1} X_{k}^{2}\right), \tag{20c}\\
M_{\alpha>\beta}(\xi, \eta) \equiv \int_{0}^{1} d \lambda \cos \left(\pi \frac{\xi-\eta}{\Delta} \lambda\right) \exp \left(\frac{\pi^{2} \lambda^{2}}{2} \sum_{k=\beta}^{\alpha-1} X_{k}^{2}\right)
\end{gather*}
$$

Equations (3) and (20) are the main result of the paper. They provide a detailed information about higher order parametric density-density correlations in the case of multiparameter perturbation of disordered system. Several particular correlators can be readily deduced from our general expression: (i) For the scalar perturbation, one obtains that $k_{p, q}$ $=\Delta^{p+q}\left\langle\Pi_{i=1}^{p} \nu\left(E+\omega_{i}, 0\right) \Pi_{j=1}^{q} \nu\left(E+\Omega_{j}, \phi\right)\right\rangle$ is determined by

$$
k_{p, q} \equiv \operatorname{Det}\left(\begin{array}{cc}
M_{\alpha, \alpha}\left(\omega_{i}, \omega_{j}\right) & M_{\alpha<\beta}\left(\omega_{i}, \Omega_{j}\right) \tag{21}\\
M_{\alpha>\beta}\left(\Omega_{i}, \omega_{j}\right) & M_{\alpha, \alpha}\left(\Omega_{i}, \Omega_{j}\right)
\end{array}\right),
$$

where $M_{\alpha, \beta}$ are those given by Eqs. (20) with $\Sigma_{k} X_{k}^{2} \rightarrow X^{2}$; (ii) By replacement [3] $\omega_{i} / \Delta \rightarrow r_{i}, \Omega_{i} / \Delta \rightarrow R_{i}$ and $X^{2} \rightarrow$ $-2 i \tau$ in Eq. (21) one arrives at the space-time correlation function in the CSM model with a coupling $\lambda=1$; here the coordinates $\left\{r_{i}\right\}$ correspond to the time $t=0$, while the $\left\{R_{i}\right\}$ refer to the time $t=\tau$.

In summary, we presented a random-matrix-theory treatment of the problem of higher-order parametric spectral statistics in disordered systems with broken time reveral symmetry in the presence of the multiparameter perturbation. A complete analytical solution was based on the mapping of the initial problem onto a model of random Hermitian matrices coupled in a chain. As a particular case of the general solution, given by Eqs. (3) and (20) the multipoint parametric spectral correlator Eq. (21) for the scalar perturbation has been obtained. Together with a well-established correspondence between CSM fermions and parametric level statistics, the latter expression provides an information about the space-time correlation function in the Calogero-SutherlandMoser model of free, noninteracting fermions.

The authors thank I. Yurkevich for bringing Ref. [16] to our attention.
[1] A. Szafer and B.L. Altshuler, Phys. Rev. Lett. 70, 587 (1993).
[2] B.D. Simons and B.L. Altshuler, Phys. Rev. Lett. 70, 4063 (1993); Phys. Rev. B 48, 5422 (1993).
[3] B.D. Simons, P.A. Lee, and B.L. Altshuler, Phys. Rev. Lett. 70, 4122 (1993).
[4] M.L. Mehta, Random Matrices (Academic Press, Boston, 1991).
[5] K.B. Efetov, Adv. Phys. 32, 53 (1983).
[6] J.J.M. Verbaarschot, H.A. Weidenmüller, and M.R. Zirnbauer, Phys. Rep. 129, 367 (1985).
[7] O. Narayan and B.S. Shastry, Phys. Rev. Lett. 71, 2106 (1993).
[8] C.W.J. Beenakker, Phys. Rev. Lett. 70, 4126 (1993); C.W.J. Beenakker and B. Rejaei, Physica A 203, 61 (1994).
[9] M.V. Berry and J. Keating, J. Phys. A 27, 6167 (1994).
[10] A.M. Ozorio de Almeida, C.H. Lewenkopf, and E.R. Mucciolo, Phys. Rev. E 58, 5693 (1998).
[11] N. Deo, S. Jair, and B. S. Shastry, Phys. Rev. E 52, 4836 (1995).
[12] B.D. Simons, P.A. Lee, and B.L. Altshuler, Phys. Rev. Lett. 72, 64 (1994).
[13] N. Taniguchi, B.S. Shastry, and B.L. Altshuler, Phys. Rev. Lett. 75, 3724 (1995).
[14] M.R. Zirnbauer and F.D.M. Haldane, Phys. Rev. B 52, 8729 (1995), and references therein.
[15] B.D. Simons, P.A. Lee, and B.L. Altshuler, Nucl. Phys. B 409,

487 (1993); B.L. Altshuler and B.D. Simons, in Mesoscopic Quantum Physics, edited by E. Akkermans et al., Proceedings of Les Houches Session LXI 1994 (Elsevier, Amsterdam, 1995).
[16] A.R. Its, A.G. Izergin, V.E. Korepin, and N.A. Slavnov, Int. J. Mod. Phys. B 4, 1003 (1990).
[17] B. Eynard and M.L. Mehta, J. Phys. A 31, 4449 (1998); G. Mahoux, M.L. Mehta, and J.-M. Normand, ibid. 31, 4457 (1998); M.L. Mehta and P. Shukla, ibid. 27, 7793 (1994); M.L. Mehta, Commun. Math. Phys. 79, 327 (1981).
[18] The relation $\phi_{k}=\pi N^{-1 / 2} X_{k}$ can be obtained, for instance, by comparison of supersymmetric generating functionals derived for the model of coupled Hermitian random matrices with that [2] known for the microscopic problem of electron motion in disordered potential in the $0 D$ limit of nonlinear, σ model [5,6].
[19] C. Itzykson and J.B. Zuber, J. Math. Phys. 21, 411 (1980).
[20] More precisely, one should write $E+\omega_{i_{\sigma}}^{(\sigma)}$ instead of $\omega_{i_{\sigma}}^{(\sigma)}$. As far as we will be interested in the local regime, in which $K_{\alpha, \beta}\left(E, E^{\prime}\right)=K_{\alpha, \beta}\left(E-E^{\prime}\right)$ is translationally invariant, one may omit E in both arguments.
[21] The Hermite functions are fixed by the orthogonality relation $\int d t \exp \left[-t^{2}\right] H_{j}(t) H_{k}(t)=\delta_{j k}$ for the associated Hermite polynomials.
[22] G. Szegö, Orthogonal Polynomials (American Mathematical Society, Providence, 1967).

